home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-12 | 4.6 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 9a 11 00 00 ba 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 31 20 20 45 71 75 61 74 |Chapter |1 Equat|
|00000020| 69 6f 6e 73 20 61 6e 64 | 20 49 6e 65 71 75 61 6c |ions and| Inequal|
|00000030| 69 74 69 65 73 0d 0a 00 | 0d 0b 00 16 31 2d 69 6e |ities...|....1-in|
|00000040| 64 65 78 16 14 63 68 61 | 70 32 2e 68 69 14 30 14 |dex..cha|p2.hi.0.|
|00000050| 31 14 37 38 14 31 38 14 | 0d 0a 00 20 20 20 20 20 |1.78.18.|... |
|00000060| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 10 31 | | .1|
|00000070| 2d 70 72 65 0e 70 72 65 | 69 6e 74 72 6f 2d 31 0e |-pre.pre|intro-1.|
|00000080| 43 68 61 70 74 65 72 20 | 57 61 72 6d 20 75 70 0f |Chapter |Warm up.|
|00000090| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 0e 73 31 2d |...... | .s1-|
|000000a0| 31 0e 53 65 63 74 69 6f | 6e 20 31 2e 31 0f 20 20 |1.Sectio|n 1.1. |
|000000b0| 47 72 61 70 68 73 20 61 | 6e 64 20 47 72 61 70 68 |Graphs a|nd Graph|
|000000c0| 69 6e 67 20 55 74 69 6c | 69 74 69 65 73 0d 0a 00 |ing Util|ities...|
|000000d0| 0d 0b 00 20 20 20 20 20 | 20 10 31 2d 32 2d 31 0e |... | .1-2-1.|
|000000e0| 73 31 2d 32 0e 53 65 63 | 74 69 6f 6e 20 31 2e 32 |s1-2.Sec|tion 1.2|
|000000f0| 0f 20 20 4c 69 6e 65 61 | 72 20 45 71 75 61 74 69 |. Linea|r Equati|
|00000100| 6f 6e 73 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 10 |ons.....|. .|
|00000110| 31 2d 33 2d 31 0e 73 31 | 2d 33 0e 53 65 63 74 69 |1-3-1.s1|-3.Secti|
|00000120| 6f 6e 20 31 2e 33 0f 20 | 20 4d 6f 64 65 6c 69 6e |on 1.3. | Modelin|
|00000130| 67 20 77 69 74 68 20 4c | 69 6e 65 61 72 20 45 71 |g with L|inear Eq|
|00000140| 75 61 74 69 6f 6e 73 0d | 0a 00 0d 0b 00 20 20 20 |uations.|..... |
|00000150| 20 20 20 10 31 2d 34 2d | 31 0e 73 31 2d 34 0e 53 | .1-4-|1.s1-4.S|
|00000160| 65 63 74 69 6f 6e 20 31 | 2e 34 0f 20 20 51 75 61 |ection 1|.4. Qua|
|00000170| 64 72 61 74 69 63 20 45 | 71 75 61 74 69 6f 6e 73 |dratic E|quations|
|00000180| 20 61 6e 64 20 41 70 70 | 6c 69 63 61 74 69 6f 6e | and App|lication|
|00000190| 73 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 10 31 2d |s...... | .1-|
|000001a0| 35 2d 31 0e 73 31 2d 35 | 0e 53 65 63 74 69 6f 6e |5-1.s1-5|.Section|
|000001b0| 20 31 2e 35 0f 20 20 43 | 6f 6d 70 6c 65 78 20 4e | 1.5. C|omplex N|
|000001c0| 75 6d 62 65 72 73 0d 0a | 00 0d 0b 00 20 20 20 20 |umbers..|.... |
|000001d0| 20 20 10 31 2d 36 2d 31 | 0e 73 31 2d 36 0e 53 65 | .1-6-1|.s1-6.Se|
|000001e0| 63 74 69 6f 6e 20 31 2e | 36 0f 20 20 4f 74 68 65 |ction 1.|6. Othe|
|000001f0| 72 20 54 79 70 65 73 20 | 6f 66 20 45 71 75 61 74 |r Types |of Equat|
|00000200| 69 6f 6e 73 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ions....|.. |
|00000210| 10 31 2d 37 2d 31 0e 73 | 31 2d 37 0e 53 65 63 74 |.1-7-1.s|1-7.Sect|
|00000220| 69 6f 6e 20 31 2e 37 0f | 20 20 4c 69 6e 65 61 72 |ion 1.7.| Linear|
|00000230| 20 49 6e 65 71 75 61 6c | 69 74 69 65 73 0d 0a 00 | Inequal|ities...|
|00000240| 0d 0b 00 20 20 20 20 20 | 20 10 31 2d 38 2d 31 0e |... | .1-8-1.|
|00000250| 73 31 2d 38 0e 53 65 63 | 74 69 6f 6e 20 31 2e 38 |s1-8.Sec|tion 1.8|
|00000260| 0f 20 20 4f 74 68 65 72 | 20 54 79 70 65 73 20 6f |. Other| Types o|
|00000270| 66 20 49 6e 65 71 75 61 | 6c 69 74 69 65 73 0d 0a |f Inequa|lities..|
|00000280| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000290| 20 20 20 20 20 20 20 10 | 31 2d 70 6f 73 74 0e 70 | .|1-post.p|
|000002a0| 6f 73 74 69 6e 74 72 6f | 2d 31 0e 43 68 61 70 74 |ostintro|-1.Chapt|
|000002b0| 65 72 20 50 6f 73 74 2d | 74 65 73 74 0f 0d 0a 00 |er Post-|test....|
|000002c0| 53 65 63 74 69 6f 6e 20 | 31 2e 31 20 20 47 72 61 |Section |1.1 Gra|
|000002d0| 70 68 73 20 61 6e 64 20 | 47 72 61 70 68 69 6e 67 |phs and |Graphing|
|000002e0| 20 55 74 69 6c 69 74 69 | 65 73 0d 0b 00 46 6f 72 | Utiliti|es...For|
|000002f0| 20 6d 6f 72 65 20 70 72 | 61 63 74 69 63 65 3a 0d | more pr|actice:.|
|00000300| 0a 00 0d 0a 00 20 20 20 | 20 20 10 31 2d 31 2d 33 |..... | .1-1-3|
|00000310| 0e 78 31 2d 31 0e 45 78 | 65 72 63 69 73 65 73 0f |.x1-1.Ex|ercises.|
|00000320| 0d 0a 00 20 20 20 20 20 | 10 31 2d 31 2d 32 0e 65 |... |.1-1-2.e|
|00000330| 31 2d 31 0e 47 75 69 64 | 65 64 20 45 78 65 72 63 |1-1.Guid|ed Exerc|
|00000340| 69 73 65 73 0f 0d 0a 00 | 0d 0a 00 54 6f 70 69 63 |ises....|...Topic|
|00000350| 73 20 66 6f 72 20 65 78 | 70 6c 6f 72 61 74 69 6f |s for ex|ploratio|
|00000360| 6e 3a 0d 0a 00 0d 0a 00 | 20 20 20 20 20 0e 73 31 |n:......| .s1|
|00000370| 2d 31 2d 31 0e 54 68 65 | 20 47 72 61 70 68 20 6f |-1-1.The| Graph o|
|00000380| 66 20 61 6e 20 45 71 75 | 61 74 69 6f 6e 0f 0d 0a |f an Equ|ation...|
|00000390| 00 20 20 20 20 20 0e 73 | 31 2d 31 2d 32 0e 50 6f |. .s|1-1-2.Po|
|000003a0| 69 6e 74 2d 50 6c 6f 74 | 74 69 6e 67 20 4d 65 74 |int-Plot|ting Met|
|000003b0| 68 6f 64 20 6f 66 20 53 | 6b 65 74 63 68 69 6e 67 |hod of S|ketching|
|000003c0| 20 61 20 47 72 61 70 68 | 0f 0d 0a 00 20 20 20 20 | a Graph|.... |
|000003d0| 20 0e 73 31 2d 31 2d 33 | 0e 49 6e 74 65 72 63 65 | .s1-1-3|.Interce|
|000003e0| 70 74 73 20 6f 66 20 61 | 20 47 72 61 70 68 0f 0d |pts of a| Graph..|
|000003f0| 0a 00 20 20 20 20 20 0e | 73 31 2d 31 2d 34 0e 53 |.. .|s1-1-4.S|
|00000400| 79 6d 6d 65 74 72 79 0f | 0d 0a 00 20 20 20 20 20 |ymmetry.|... |
|00000410| 0e 73 31 2d 31 2d 35 0e | 54 68 65 20 45 71 75 61 |.s1-1-5.|The Equa|
|00000420| 74 69 6f 6e 20 6f 66 20 | 61 20 43 69 72 63 6c 65 |tion of |a Circle|
|00000430| 0f 0d 0a 00 53 65 63 74 | 69 6f 6e 20 31 2e 31 20 |....Sect|ion 1.1 |
|00000440| 20 47 72 61 70 68 73 20 | 61 6e 64 20 47 72 61 70 | Graphs |and Grap|
|00000450| 68 69 6e 67 20 55 74 69 | 6c 69 74 69 65 73 0d 0b |hing Uti|lities..|
|00000460| 00 46 6f 72 20 61 6e 20 | 65 71 75 61 74 69 6f 6e |.For an |equation|
|00000470| 20 69 6e 20 76 61 72 69 | 61 62 6c 65 73 20 11 33 | in vari|ables .3|
|00000480| 78 20 11 31 61 6e 64 20 | 11 33 79 11 31 2c 20 74 |x .1and |.3y.1, t|
|00000490| 68 65 20 70 6f 69 6e 74 | 20 28 11 33 61 11 31 2c |he point| (.3a.1,|
|000004a0| 20 11 33 62 11 31 29 20 | 69 73 20 61 20 12 31 73 | .3b.1) |is a .1s|
|000004b0| 6f 6c 75 74 69 6f 6e 20 | 70 6f 69 6e 74 12 30 20 |olution |point.0 |
|000004c0| 69 66 0d 0a 00 74 68 65 | 20 73 75 62 73 74 69 74 |if...the| substit|
|000004d0| 75 74 69 6f 6e 20 6f 66 | 20 11 33 78 20 11 31 3d |ution of| .3x .1=|
|000004e0| 20 11 33 61 20 11 31 61 | 6e 64 20 11 33 79 20 11 | .3a .1a|nd .3y .|
|000004f0| 31 3d 20 11 33 62 20 11 | 31 73 61 74 69 73 66 69 |1= .3b .|1satisfi|
|00000500| 65 73 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 2e |es the e|quation.|
|00000510| 0d 0a 00 0d 0b 00 46 6f | 72 20 69 6e 73 74 61 6e |......Fo|r instan|
|00000520| 63 65 2c 20 74 68 65 20 | 70 6f 69 6e 74 20 28 31 |ce, the |point (1|
|00000530| 2c 20 32 29 20 69 73 20 | 61 20 73 6f 6c 75 74 69 |, 2) is |a soluti|
|00000540| 6f 6e 20 70 6f 69 6e 74 | 20 6f 66 20 74 68 65 20 |on point| of the |
|00000550| 65 71 75 61 74 69 6f 6e | 0d 0a 00 0d 0b 00 20 20 |equation|...... |
|00000560| 20 20 20 11 33 79 20 11 | 31 3d 20 11 33 78 20 11 | .3y .|1= .3x .|
|00000570| 31 2b 20 31 0d 0a 00 0d | 0b 00 62 65 63 61 75 73 |1+ 1....|..becaus|
|00000580| 65 20 74 68 65 20 76 61 | 6c 75 65 73 20 11 33 78 |e the va|lues .3x|
|00000590| 20 11 31 3d 20 31 20 61 | 6e 64 20 11 33 79 20 11 | .1= 1 a|nd .3y .|
|000005a0| 31 3d 20 32 20 73 61 74 | 69 73 66 79 20 74 68 65 |1= 2 sat|isfy the|
|000005b0| 20 65 71 75 61 74 69 6f | 6e 2e 0d 0a 00 0d 0b 00 | equatio|n.......|
|000005c0| 54 68 65 20 73 65 74 20 | 6f 66 20 61 6c 6c 20 73 |The set |of all s|
|000005d0| 6f 6c 75 74 69 6f 6e 20 | 70 6f 69 6e 74 73 20 6f |olution |points o|
|000005e0| 66 20 61 6e 20 65 71 75 | 61 74 69 6f 6e 20 69 73 |f an equ|ation is|
|000005f0| 20 63 61 6c 6c 65 64 20 | 74 68 65 20 12 31 67 72 | called |the .1gr|
|00000600| 61 70 68 20 6f 66 20 74 | 68 65 0d 0a 00 65 71 75 |aph of t|he...equ|
|00000610| 61 74 69 6f 6e 12 30 2e | 0d 0a 00 53 65 63 74 69 |ation.0.|...Secti|
|00000620| 6f 6e 20 31 2e 31 20 20 | 47 72 61 70 68 73 20 61 |on 1.1 |Graphs a|
|00000630| 6e 64 20 47 72 61 70 68 | 69 6e 67 20 55 74 69 6c |nd Graph|ing Util|
|00000640| 69 74 69 65 73 0d 0b 00 | 4f 6e 65 20 6d 65 74 68 |ities...|One meth|
|00000650| 6f 64 20 66 6f 72 20 73 | 6b 65 74 63 68 69 6e 67 |od for s|ketching|
|00000660| 20 74 68 65 20 67 72 61 | 70 68 20 6f 66 20 61 6e | the gra|ph of an|
|00000670| 20 65 71 75 61 74 69 6f | 6e 20 69 73 20 63 61 6c | equatio|n is cal|
|00000680| 6c 65 64 20 74 68 65 20 | 0d 0a 00 12 31 70 6f 69 |led the |....1poi|
|00000690| 6e 74 2d 70 6c 6f 74 74 | 69 6e 67 20 6d 65 74 68 |nt-plott|ing meth|
|000006a0| 6f 64 12 30 2e 20 20 57 | 65 20 73 75 6d 6d 61 72 |od.0. W|e summar|
|000006b0| 69 7a 65 20 74 68 65 20 | 62 61 73 69 63 20 73 74 |ize the |basic st|
|000006c0| 65 70 73 20 6f 66 20 74 | 68 65 0d 0a 00 70 6f 69 |eps of t|he...poi|
|000006d0| 6e 74 2d 70 6c 6f 74 74 | 69 6e 67 20 6d 65 74 68 |nt-plott|ing meth|
|000006e0| 6f 64 20 6f 66 20 73 6b | 65 74 63 68 69 6e 67 20 |od of sk|etching |
|000006f0| 61 20 67 72 61 70 68 20 | 61 73 20 66 6f 6c 6c 6f |a graph |as follo|
|00000700| 77 73 2e 0d 0a 00 0d 0a | 00 20 20 20 20 20 31 2e |ws......|. 1.|
|00000710| 20 20 49 66 20 70 6f 73 | 73 69 62 6c 65 2c 20 72 | If pos|sible, r|
|00000720| 65 77 72 69 74 65 20 74 | 68 65 20 65 71 75 61 74 |ewrite t|he equat|
|00000730| 69 6f 6e 20 62 79 20 69 | 73 6f 6c 61 74 69 6e 67 |ion by i|solating|
|00000740| 20 6f 6e 65 20 6f 66 20 | 74 68 65 20 0d 0a 00 20 | one of |the ... |
|00000750| 20 20 20 20 20 20 20 20 | 76 61 72 69 61 62 6c 65 | |variable|
|00000760| 73 2e 0d 0a 00 0d 0b 00 | 20 20 20 20 20 32 2e 20 |s.......| 2. |
|00000770| 20 4d 61 6b 65 20 75 70 | 20 61 20 74 61 62 6c 65 | Make up| a table|
|00000780| 20 6f 66 20 76 61 6c 75 | 65 73 20 73 68 6f 77 69 | of valu|es showi|
|00000790| 6e 67 20 73 65 76 65 72 | 61 6c 20 73 6f 6c 75 74 |ng sever|al solut|
|000007a0| 69 6f 6e 20 70 6f 69 6e | 74 73 2e 0d 0a 00 0d 0b |ion poin|ts......|
|000007b0| 00 20 20 20 20 20 33 2e | 20 20 50 6c 6f 74 20 74 |. 3.| Plot t|
|000007c0| 68 65 73 65 20 70 6f 69 | 6e 74 73 20 69 6e 20 74 |hese poi|nts in t|
|000007d0| 68 65 20 63 6f 6f 72 64 | 69 6e 61 74 65 20 70 6c |he coord|inate pl|
|000007e0| 61 6e 65 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 34 |ane.....|.. 4|
|000007f0| 2e 20 20 43 6f 6e 6e 65 | 63 74 20 74 68 65 20 70 |. Conne|ct the p|
|00000800| 6f 69 6e 74 73 20 77 69 | 74 68 20 61 20 73 6d 6f |oints wi|th a smo|
|00000810| 6f 74 68 20 63 75 72 76 | 65 2e 0d 0a 00 53 65 63 |oth curv|e....Sec|
|00000820| 74 69 6f 6e 20 31 2e 31 | 20 20 47 72 61 70 68 73 |tion 1.1| Graphs|
|00000830| 20 61 6e 64 20 47 72 61 | 70 68 69 6e 67 20 55 74 | and Gra|phing Ut|
|00000840| 69 6c 69 74 69 65 73 0d | 0b 00 54 68 65 20 12 31 |ilities.|..The .1|
|00000850| 69 6e 74 65 72 63 65 70 | 74 73 12 30 20 6f 66 20 |intercep|ts.0 of |
|00000860| 61 20 67 72 61 70 68 20 | 61 72 65 20 74 68 65 20 |a graph |are the |
|00000870| 70 6f 69 6e 74 73 20 61 | 74 20 77 68 69 63 68 20 |points a|t which |
|00000880| 74 68 65 20 67 72 61 70 | 68 20 63 72 6f 73 73 65 |the grap|h crosse|
|00000890| 73 20 28 6f 72 0d 0a 00 | 74 6f 75 63 68 65 73 29 |s (or...|touches)|
|000008a0| 20 74 68 65 20 11 33 78 | 11 31 2d 61 78 69 73 20 | the .3x|.1-axis |
|000008b0| 6f 72 20 74 68 65 20 11 | 33 79 11 31 2d 61 78 69 |or the .|3y.1-axi|
|000008c0| 73 2e 20 20 49 6e 20 6f | 74 68 65 72 20 77 6f 72 |s. In o|ther wor|
|000008d0| 64 73 2c 20 69 6e 74 65 | 72 63 65 70 74 73 20 6f |ds, inte|rcepts o|
|000008e0| 63 63 75 72 20 77 68 65 | 6e 20 0d 0a 00 65 69 74 |ccur whe|n ...eit|
|000008f0| 68 65 72 20 74 68 65 20 | 11 33 79 11 31 2d 63 6f |her the |.3y.1-co|
|00000900| 6f 72 64 69 6e 61 74 65 | 20 6f 72 20 74 68 65 20 |ordinate| or the |
|00000910| 11 33 78 11 31 2d 63 6f | 6f 72 64 69 6e 61 74 65 |.3x.1-co|ordinate|
|00000920| 20 69 73 20 7a 65 72 6f | 20 28 6f 72 20 62 6f 74 | is zero| (or bot|
|00000930| 68 20 61 72 65 20 7a 65 | 72 6f 29 2e 0d 0a 00 0d |h are ze|ro).....|
|00000940| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000950| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 44 65 66 | | .1Def|
|00000960| 69 6e 69 74 69 6f 6e 20 | 6f 66 20 49 6e 74 65 72 |inition |of Inter|
|00000970| 63 65 70 74 73 12 30 0d | 0a 00 0d 0b 00 31 2e 20 |cepts.0.|.....1. |
|00000980| 20 54 68 65 20 70 6f 69 | 6e 74 20 28 11 33 61 11 | The poi|nt (.3a.|
|00000990| 31 2c 20 30 29 20 69 73 | 20 61 6e 20 12 31 11 33 |1, 0) is| an .1.3|
|000009a0| 78 11 31 2d 69 6e 74 65 | 72 63 65 70 74 12 30 20 |x.1-inte|rcept.0 |
|000009b0| 6f 66 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |of the g|raph of |
|000009c0| 61 6e 20 65 71 75 61 74 | 69 6f 6e 20 69 66 20 69 |an equat|ion if i|
|000009d0| 74 20 69 73 20 61 0d 0a | 00 20 20 20 20 73 6f 6c |t is a..|. sol|
|000009e0| 75 74 69 6f 6e 20 70 6f | 69 6e 74 20 6f 66 20 74 |ution po|int of t|
|000009f0| 68 65 20 65 71 75 61 74 | 69 6f 6e 2e 0d 0a 00 0d |he equat|ion.....|
|00000a00| 0b 00 20 20 20 20 54 6f | 20 66 69 6e 64 20 74 68 |.. To| find th|
|00000a10| 65 20 11 33 78 11 31 2d | 69 6e 74 65 72 63 65 70 |e .3x.1-|intercep|
|00000a20| 74 73 2c 20 6c 65 74 20 | 11 33 79 20 11 31 62 65 |ts, let |.3y .1be|
|00000a30| 20 7a 65 72 6f 20 61 6e | 64 20 73 6f 6c 76 65 20 | zero an|d solve |
|00000a40| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 66 6f 72 |the equa|tion for|
|00000a50| 20 11 33 78 11 31 2e 0d | 0a 00 0d 0a 00 32 2e 20 | .3x.1..|.....2. |
|00000a60| 20 54 68 65 20 70 6f 69 | 6e 74 20 28 30 2c 20 11 | The poi|nt (0, .|
|00000a70| 33 62 11 31 29 20 69 73 | 20 61 20 12 31 11 33 79 |3b.1) is| a .1.3y|
|00000a80| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 12 30 20 6f |.1-inter|cept.0 o|
|00000a90| 66 20 74 68 65 20 67 72 | 61 70 68 20 6f 66 20 61 |f the gr|aph of a|
|00000aa0| 6e 20 65 71 75 61 74 69 | 6f 6e 20 69 66 20 69 74 |n equati|on if it|
|00000ab0| 20 69 73 20 61 0d 0a 00 | 20 20 20 20 73 6f 6c 75 | is a...| solu|
|00000ac0| 74 69 6f 6e 20 70 6f 69 | 6e 74 20 6f 66 20 74 68 |tion poi|nt of th|
|00000ad0| 65 20 65 71 75 61 74 69 | 6f 6e 2e 0d 0a 00 0d 0b |e equati|on......|
|00000ae0| 00 20 20 20 20 54 6f 20 | 66 69 6e 64 20 74 68 65 |. To |find the|
|00000af0| 20 11 33 79 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3y.1-i|ntercept|
|00000b00| 73 2c 20 6c 65 74 20 11 | 33 78 20 11 31 62 65 20 |s, let .|3x .1be |
|00000b10| 7a 65 72 6f 20 61 6e 64 | 20 73 6f 6c 76 65 20 74 |zero and| solve t|
|00000b20| 68 65 20 65 71 75 61 74 | 69 6f 6e 20 66 6f 72 20 |he equat|ion for |
|00000b30| 11 33 79 11 31 2e 0d 0a | 00 53 65 63 74 69 6f 6e |.3y.1...|.Section|
|00000b40| 20 31 2e 31 20 20 47 72 | 61 70 68 73 20 61 6e 64 | 1.1 Gr|aphs and|
|00000b50| 20 47 72 61 70 68 69 6e | 67 20 55 74 69 6c 69 74 | Graphin|g Utilit|
|00000b60| 69 65 73 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ies | |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 53 79 6d | | .1Sym|
|00000b80| 6d 65 74 72 79 20 6f 66 | 20 61 20 47 72 61 70 68 |metry of| a Graph|
|00000b90| 12 30 0d 0a 00 0d 0b 00 | 41 20 67 72 61 70 68 20 |.0......|A graph |
|00000ba0| 69 73 20 63 61 6c 6c 65 | 64 20 12 31 73 79 6d 6d |is calle|d .1symm|
|00000bb0| 65 74 72 69 63 20 77 69 | 74 68 20 72 65 73 70 65 |etric wi|th respe|
|00000bc0| 63 74 20 74 6f 20 74 68 | 65 20 11 33 79 11 31 2d |ct to th|e .3y.1-|
|00000bd0| 61 78 69 73 12 30 20 69 | 66 2c 20 77 68 65 6e 65 |axis.0 i|f, whene|
|00000be0| 76 65 72 20 74 68 65 20 | 70 6f 69 6e 74 0d 0a 00 |ver the |point...|
|00000bf0| 28 11 33 78 11 31 2c 20 | 11 33 79 11 31 29 20 69 |(.3x.1, |.3y.1) i|
|00000c00| 73 20 6f 6e 20 74 68 65 | 20 67 72 61 70 68 2c 20 |s on the| graph, |
|00000c10| 74 68 65 20 70 6f 69 6e | 74 20 28 2d 11 33 78 11 |the poin|t (-.3x.|
|00000c20| 31 2c 20 11 33 79 11 31 | 29 20 69 73 20 61 6c 73 |1, .3y.1|) is als|
|00000c30| 6f 20 6f 6e 20 74 68 65 | 20 67 72 61 70 68 2e 0d |o on the| graph..|
|00000c40| 0a 00 0d 0b 00 54 6f 20 | 12 31 74 65 73 74 20 66 |.....To |.1test f|
|00000c50| 6f 72 20 11 33 79 11 31 | 2d 61 78 69 73 20 73 79 |or .3y.1|-axis sy|
|00000c60| 6d 6d 65 74 72 79 12 30 | 2c 20 72 65 70 6c 61 63 |mmetry.0|, replac|
|00000c70| 65 20 11 33 78 20 11 31 | 62 79 20 2d 11 33 78 20 |e .3x .1|by -.3x |
|00000c80| 11 31 69 6e 20 74 68 65 | 20 6f 72 69 67 69 6e 61 |.1in the| origina|
|00000c90| 6c 20 65 71 75 61 74 69 | 6f 6e 2e 20 20 49 66 20 |l equati|on. If |
|00000ca0| 79 6f 75 20 0d 0a 00 6f | 62 74 61 69 6e 20 61 6e |you ...o|btain an|
|00000cb0| 20 65 71 75 61 74 69 6f | 6e 20 74 68 61 74 20 69 | equatio|n that i|
|00000cc0| 73 20 65 71 75 69 76 61 | 6c 65 6e 74 20 74 6f 20 |s equiva|lent to |
|00000cd0| 74 68 65 20 6f 72 69 67 | 69 6e 61 6c 2c 20 74 68 |the orig|inal, th|
|00000ce0| 65 6e 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |en the g|raph of |
|00000cf0| 74 68 65 20 0d 0a 00 65 | 71 75 61 74 69 6f 6e 20 |the ...e|quation |
|00000d00| 69 73 20 73 79 6d 6d 65 | 74 72 69 63 20 77 69 74 |is symme|tric wit|
|00000d10| 68 20 72 65 73 70 65 63 | 74 20 74 6f 20 74 68 65 |h respec|t to the|
|00000d20| 20 11 33 79 11 31 2d 61 | 78 69 73 2e 0d 0a 00 0d | .3y.1-a|xis.....|
|00000d30| 0b 00 41 20 67 72 61 70 | 68 20 69 73 20 63 61 6c |..A grap|h is cal|
|00000d40| 6c 65 64 20 12 31 73 79 | 6d 6d 65 74 72 69 63 20 |led .1sy|mmetric |
|00000d50| 77 69 74 68 20 72 65 73 | 70 65 63 74 20 74 6f 20 |with res|pect to |
|00000d60| 74 68 65 20 11 33 78 11 | 31 2d 61 78 69 73 12 30 |the .3x.|1-axis.0|
|00000d70| 20 69 66 2c 20 77 68 65 | 6e 65 76 65 72 20 74 68 | if, whe|never th|
|00000d80| 65 20 70 6f 69 6e 74 0d | 0a 00 28 11 33 78 11 31 |e point.|..(.3x.1|
|00000d90| 2c 20 11 33 79 11 31 29 | 20 69 73 20 6f 6e 20 74 |, .3y.1)| is on t|
|00000da0| 68 65 20 67 72 61 70 68 | 2c 20 74 68 65 20 70 6f |he graph|, the po|
|00000db0| 69 6e 74 20 28 11 33 78 | 11 31 2c 20 2d 11 33 79 |int (.3x|.1, -.3y|
|00000dc0| 11 31 29 20 69 73 20 61 | 6c 73 6f 20 6f 6e 20 74 |.1) is a|lso on t|
|00000dd0| 68 65 20 67 72 61 70 68 | 2e 0d 0a 00 0d 0b 00 54 |he graph|.......T|
|00000de0| 6f 20 12 31 74 65 73 74 | 20 66 6f 72 20 11 33 78 |o .1test| for .3x|
|00000df0| 11 31 2d 61 78 69 73 20 | 73 79 6d 6d 65 74 72 79 |.1-axis |symmetry|
|00000e00| 12 30 2c 20 72 65 70 6c | 61 63 65 20 11 33 79 20 |.0, repl|ace .3y |
|00000e10| 11 31 62 79 20 2d 11 33 | 79 20 11 31 69 6e 20 74 |.1by -.3|y .1in t|
|00000e20| 68 65 20 6f 72 69 67 69 | 6e 61 6c 20 65 71 75 61 |he origi|nal equa|
|00000e30| 74 69 6f 6e 2e 20 20 49 | 66 20 79 6f 75 0d 0a 00 |tion. I|f you...|
|00000e40| 6f 62 74 61 69 6e 20 61 | 6e 20 65 71 75 61 74 69 |obtain a|n equati|
|00000e50| 6f 6e 20 74 68 61 74 20 | 69 73 20 65 71 75 69 76 |on that |is equiv|
|00000e60| 61 6c 65 6e 74 20 74 6f | 20 74 68 65 20 6f 72 69 |alent to| the ori|
|00000e70| 67 69 6e 61 6c 2c 20 74 | 68 65 6e 20 74 68 65 20 |ginal, t|hen the |
|00000e80| 67 72 61 70 68 20 6f 66 | 20 74 68 65 0d 0a 00 65 |graph of| the...e|
|00000e90| 71 75 61 74 69 6f 6e 20 | 69 73 20 73 79 6d 6d 65 |quation |is symme|
|00000ea0| 74 72 69 63 20 77 69 74 | 68 20 72 65 73 70 65 63 |tric wit|h respec|
|00000eb0| 74 20 74 6f 20 74 68 65 | 20 11 33 78 11 31 2d 61 |t to the| .3x.1-a|
|00000ec0| 78 69 73 2e 0d 0a 00 0d | 0b 00 41 20 67 72 61 70 |xis.....|..A grap|
|00000ed0| 68 20 69 73 20 63 61 6c | 6c 65 64 20 12 31 73 79 |h is cal|led .1sy|
|00000ee0| 6d 6d 65 74 72 69 63 20 | 77 69 74 68 20 72 65 73 |mmetric |with res|
|00000ef0| 70 65 63 74 20 74 6f 20 | 74 68 65 20 6f 72 69 67 |pect to |the orig|
|00000f00| 69 6e 12 30 20 69 66 2c | 20 77 68 65 6e 65 76 65 |in.0 if,| wheneve|
|00000f10| 72 20 74 68 65 20 70 6f | 69 6e 74 0d 0a 00 28 11 |r the po|int...(.|
|00000f20| 33 78 11 31 2c 20 11 33 | 79 11 31 29 20 69 73 20 |3x.1, .3|y.1) is |
|00000f30| 6f 6e 20 74 68 65 20 67 | 72 61 70 68 2c 20 74 68 |on the g|raph, th|
|00000f40| 65 20 70 6f 69 6e 74 20 | 28 11 33 2d 78 2c 20 2d |e point |(.3-x, -|
|00000f50| 79 11 31 29 20 69 73 20 | 61 6c 73 6f 20 6f 6e 20 |y.1) is |also on |
|00000f60| 74 68 65 20 67 72 61 70 | 68 2e 0d 0a 00 0d 0b 00 |the grap|h.......|
|00000f70| 54 6f 20 12 31 74 65 73 | 74 20 66 6f 72 20 6f 72 |To .1tes|t for or|
|00000f80| 69 67 69 6e 20 73 79 6d | 6d 65 74 72 79 12 30 2c |igin sym|metry.0,|
|00000f90| 20 72 65 70 6c 61 63 65 | 20 11 33 78 20 11 31 62 | replace| .3x .1b|
|00000fa0| 79 20 2d 11 33 78 20 11 | 31 61 6e 64 20 11 33 79 |y -.3x .|1and .3y|
|00000fb0| 20 11 31 62 79 20 2d 11 | 33 79 20 11 31 69 6e 20 | .1by -.|3y .1in |
|00000fc0| 74 68 65 20 6f 72 69 67 | 69 6e 61 6c 0d 0a 00 65 |the orig|inal...e|
|00000fd0| 71 75 61 74 69 6f 6e 2e | 20 20 49 66 20 79 6f 75 |quation.| If you|
|00000fe0| 20 6f 62 74 61 69 6e 20 | 61 6e 20 65 71 75 61 74 | obtain |an equat|
|00000ff0| 69 6f 6e 20 74 68 61 74 | 20 69 73 20 65 71 75 69 |ion that| is equi|
|00001000| 76 61 6c 65 6e 74 20 74 | 6f 20 74 68 65 20 6f 72 |valent t|o the or|
|00001010| 69 67 69 6e 61 6c 2c 20 | 74 68 65 6e 0d 0a 00 74 |iginal, |then...t|
|00001020| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00001030| 65 71 75 61 74 69 6f 6e | 20 69 73 20 73 79 6d 6d |equation| is symm|
|00001040| 65 74 72 69 63 20 77 69 | 74 68 20 72 65 73 70 65 |etric wi|th respe|
|00001050| 63 74 20 74 6f 20 74 68 | 65 20 6f 72 69 67 69 6e |ct to th|e origin|
|00001060| 2e 0d 0b 00 53 65 63 74 | 69 6f 6e 20 31 2e 31 20 |....Sect|ion 1.1 |
|00001070| 20 47 72 61 70 68 73 20 | 61 6e 64 20 47 72 61 70 | Graphs |and Grap|
|00001080| 68 69 6e 67 20 55 74 69 | 6c 69 74 69 65 73 20 20 |hing Uti|lities |
|00001090| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010a0| 20 20 20 20 20 20 20 12 | 31 45 71 75 61 74 69 6f | .|1Equatio|
|000010b0| 6e 20 6f 66 20 61 20 43 | 69 72 63 6c 65 12 30 0d |n of a C|ircle.0.|
|000010c0| 0a 00 0d 0b 00 54 68 65 | 20 12 31 73 74 61 6e 64 |.....The| .1stand|
|000010d0| 61 72 64 20 66 6f 72 6d | 12 30 20 6f 66 20 74 68 |ard form|.0 of th|
|000010e0| 65 20 65 71 75 61 74 69 | 6f 6e 20 6f 66 20 61 20 |e equati|on of a |
|000010f0| 63 69 72 63 6c 65 20 77 | 69 74 68 20 12 31 72 61 |circle w|ith .1ra|
|00001100| 64 69 75 73 12 30 20 11 | 33 72 20 11 31 61 6e 64 |dius.0 .|3r .1and|
|00001110| 20 12 31 63 65 6e 74 65 | 72 12 30 20 61 74 0d 0a | .1cente|r.0 at..|
|00001120| 00 28 11 33 68 11 31 2c | 20 11 33 6b 11 31 29 20 |.(.3h.1,| .3k.1) |
|00001130| 69 73 20 67 69 76 65 6e | 20 62 79 0d 0a 00 20 20 |is given| by... |
|00001140| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 20 20 20 | | .22 |
|00001150| 20 20 20 20 20 20 20 32 | 20 20 20 20 32 0d 0b 00 | 2| 2...|
|00001160| 20 20 20 20 20 11 31 28 | 11 33 78 20 11 31 2d 20 | .1(|.3x .1- |
|00001170| 11 33 68 11 31 29 20 20 | 2b 20 28 11 33 79 20 11 |.3h.1) |+ (.3y .|
|00001180| 31 2d 20 11 33 6b 11 31 | 29 20 20 3d 20 11 33 72 |1- .3k.1|) = .3r|
|00001190| 20 11 31 2e 0d 0a 00 0d | 0b 00 35 00 00 00 8b 02 | .1.....|..5.....|
|000011a0| 00 00 4d 25 00 00 10 00 | 00 00 00 00 00 00 63 68 |..M%....|......ch|
|000011b0| 61 70 31 00 ea 02 00 00 | 4a 01 00 00 4d 2a 00 00 |ap1.....|J...M*..|
|000011c0| c0 02 00 00 00 00 00 00 | 73 31 2d 31 00 5e 04 00 |........|s1-1.^..|
|000011d0| 00 bd 01 00 00 4d 2a 00 | 00 34 04 00 00 00 00 00 |.....M*.|.4......|
|000011e0| 00 73 31 2d 31 2d 31 00 | 45 06 00 00 d8 01 00 00 |.s1-1-1.|E.......|
|000011f0| 4d 2a 00 00 1b 06 00 00 | 00 00 00 00 73 31 2d 31 |M*......|....s1-1|
|00001200| 2d 32 00 47 08 00 00 f2 | 02 00 00 4d 2a 00 00 1d |-2.G....|...M*...|
|00001210| 08 00 00 00 00 00 00 73 | 31 2d 31 2d 33 00 63 0b |.......s|1-1-3.c.|
|00001220| 00 00 01 05 00 00 4d 2a | 00 00 39 0b 00 00 00 00 |......M*|..9.....|
|00001230| 00 00 73 31 2d 31 2d 34 | 00 8e 10 00 00 0c 01 00 |..s1-1-4|........|
|00001240| 00 4d 2a 00 00 64 10 00 | 00 00 00 00 00 73 31 2d |.M*..d..|.....s1-|
|00001250| 31 2d 35 00 | |1-5. | |
+--------+-------------------------+-------------------------+--------+--------+